If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x^2)-49=0
a = 4; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·4·(-49)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*4}=\frac{-28}{8} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*4}=\frac{28}{8} =3+1/2 $
| 1-8a-7a=a-15 | | -x/5=59 | | f/2=16 | | 4x6=4/ | | 2.5(4p-16=) | | (3x4)=0 | | 150-30f=50 | | -n/15=-14 | | 30q=7 | | 14/t=10/12 | | 344=8(1-7k) | | (3x^2)-11x-20=0 | | -n/17=-5 | | 7{y-4}-7=0 | | 32g=736 | | -7(5y-8=7 | | v^{2}+6v-59=0 | | 2.34=0.38v | | 13y=65=y=4 | | .3x–8=4 | | -n/10=3 | | (1x^2)+8x+16=0 | | (1x^2)+3x-10=0 | | 5s-2=1 | | 15-8z=6 | | (-6x^2)-6=-7x-9 | | 16/8/3=0.4/x | | 6p+7=5 | | 18x-36=468 | | (-2x^2)-8x-14=-6 | | 5t+11=31 | | -36=6r-12 |